Nonane deformation under compression and decompression of a flow-stabilized solid
نویسندگان
چکیده
Understanding the particle-scale transition from elastic deformation to plastic flow is central to making predictions about the bulk material properties and response of disordered materials. To address this issue, we perform experiments on flow-stabilized solids composed of micron-scale spheres within a microfluidic channel, in a regime where particle inertia is negligible. Each solid heap exists within a stress field imposed by the flow, and we track the positions of particles in response to single impulses of fluid-driven compression or decompression. We find that the resulting deformation field is well-decomposed into an ane field, with a constant strain profile throughout the solid, and a non-ane field. The magnitude of this non-ane response decays with the distance from the free surface in the long-time limit, suggesting that the distance from jamming plays a significant role in controlling the length scale of plastic flow. Finally, we observe that compressive pulses create more rearrangements than decompressive pulses, an eect that we quantify using the Dmin 2 statistic for non-ane motion. Unexpectedly, the time scale for the compression response is shorter than for decompression at the same strain (but unequal pressure), providing insight into the coupling between deformation and cage-breaking.
منابع مشابه
Microstructural Evolution of X45CrNiW189 Valve Steel During Hot Deformation
The hot compression tests were carried on X45CrNiW189 valve steel (X45) in the temperature range of 1000– 1200 °C and the strain rate range of 0.004 – 0.5 s-1 in order to study the high temperature softening behavior of this steel. For the exact prediction of flow stress, the effective stress-effective strain curves were obtained from experiments under various conditions. On the basis of experi...
متن کاملInfluence of Initial Microstructure on Hot Deformation Behavior of Duplex Stainless Steels
In this research the effect of initial microstructure on hot deformation behavior in terms of Ferrite-to-Austenite ratios is studied. Two types of stainless steels C1 and C2 were homogenizing heat-treated and deformed under hot compression examinations at temperatures 900ºC and 1100ºC at strain rate of 0.1s-1. The results showed that the flow stress levels of specimens are strongly r...
متن کاملCorrecting the stress-strain curve in hot compression test using finite element analysis and Taguchi method
In the hot compression test friction has a detrimental influence on the flow stress through the process and therefore, correcting the deformation curve for real behavior is very important for both researchers and engineers. In this study, a series of compression tests were simulated using Abaqus software. In this study, it has been employed the Taguchi method to design experiments by the factor...
متن کاملFirst-Order Formulation for Functionally Graded Stiffened Cylindrical Shells Under Axial Compression
The buckling analysis of stiffened cylindrical shells by rings and stringers made of functionally graded materials subjected to axial compression loading is presented. It is assumed that the material properties vary as a power form of the thickness coordinate variable. The fundamental relations, the equilibrium and stability equations are derived using the first order shear deformation theory. ...
متن کاملA SVM model to predict the hot deformation flow curves of AZ91 magnesium alloy
Abstract In this work, a support vector machine (SVM) model was developed to predict the hot deformation flow curves of AZ91 magnesium alloy. The experimental stress-strain curves, obtained from hot compression testing at different deformation conditions, were sampled. Consequently, a data base with the input variables of the deformation temperature, strain rate and strain and the output variab...
متن کامل